p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.11Q8, (C2×C8).7D4, C23.57(C2×Q8), (C22×C4).14Q8, C4.59(C4⋊1D4), C4.10C42⋊6C2, M4(2).C4⋊8C2, C24.4C4.1C2, (C23×C4).278C22, (C22×C4).742C23, C22.38(C22⋊Q8), C2.4(C23.4Q8), C4.120(C22.D4), (C2×M4(2)).238C22, (C2×C4).1384(C2×D4), (C2×C4).358(C4○D4), SmallGroup(128,823)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.11Q8
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=be2, faf-1=ab=ba, eae-1=ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=be3 >
Subgroups: 216 in 111 conjugacy classes, 40 normal (10 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C23, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, C22⋊C8, C8.C4, C2×M4(2), C23×C4, C4.10C42, C24.4C4, M4(2).C4, C24.11Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4⋊1D4, C23.4Q8, C24.11Q8
Character table of C24.11Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 8K | 8L | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 4i | -4i | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | -4i | 4i | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 4i | -4i | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | -4i | 4i | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(10 14)(12 16)
(2 6)(4 8)(10 14)(12 16)
(9 13)(10 14)(11 15)(12 16)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 15 3 9 5 11 7 13)(2 14 8 12 6 10 4 16)
G:=sub<Sym(16)| (10,14)(12,16), (2,6)(4,8)(10,14)(12,16), (9,13)(10,14)(11,15)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15,3,9,5,11,7,13)(2,14,8,12,6,10,4,16)>;
G:=Group( (10,14)(12,16), (2,6)(4,8)(10,14)(12,16), (9,13)(10,14)(11,15)(12,16), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,15,3,9,5,11,7,13)(2,14,8,12,6,10,4,16) );
G=PermutationGroup([[(10,14),(12,16)], [(2,6),(4,8),(10,14),(12,16)], [(9,13),(10,14),(11,15),(12,16)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,15,3,9,5,11,7,13),(2,14,8,12,6,10,4,16)]])
G:=TransitiveGroup(16,403);
Matrix representation of C24.11Q8 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1],[4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[0,0,4,0,0,0,0,1,2,0,0,0,0,3,0,0],[0,1,0,0,2,0,0,0,0,0,0,2,0,0,4,0] >;
C24.11Q8 in GAP, Magma, Sage, TeX
C_2^4._{11}Q_8
% in TeX
G:=Group("C2^4.11Q8");
// GroupNames label
G:=SmallGroup(128,823);
// by ID
G=gap.SmallGroup(128,823);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,56,141,176,422,387,1018,248,1411,4037]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=b*e^2,f*a*f^-1=a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^3>;
// generators/relations
Export